Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
J Appl Toxicol ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38715282

The prevalence of fragrances in various hygiene products contributes to their sensorial allure. However, fragrances can induce sensitization in the skin or respiratory system, and the mechanisms involved in this process are incompletely understood. This study investigated the intricate mechanisms underlying the fragrance's effects on sensitization response, focusing on the interplay between CYP450 enzymes, a class of drug-metabolizing enzymes, and the adaptive immune system. Specifically, we assessed the expression of CYP450 enzymes and cytokine profiles in culture of BEAS-2B and mature dendritic cells (mDC) alone or in co-culture stimulated with 2 mM of a common fragrance, cinnamyl alcohol (CA) for 20 h. CYP1A1, CYP1A2, CYP1B1, CYP2A6, and CYP2A13 were analyzed by RT-PCR and IL-10, IL-12p70, IL-18, IL-33, and thymic stromal lymphopoietin (TSLP) by Cytometric Bead Array (CBA). Through RT-PCR analysis, we observed that CA increased CYP1A2 and CYP1B1 expression in BEAS-2B, with a further increased in BEAS-2B-mDC co-culture. Additionally, exposure to CA increased IL-12p70 levels in mDC rather than in BEAS-2B-mDC co-culture. In regards to IL-18, level was higher in BEAS-2B than in BEAS-2B-mDC co-culture. A positive correlation between the levels of IL-10 and CYP1B1 was found in mDC-CA-exposed and between IL-12p70 and CYP1A1 was found in BEAS-2B after CA exposure. However, IL-12p70 and CYP1A2 as well as IL-18, IL-33, and CYP1A1 levels were negative, correlated mainly in co-culture control. These correlations highlight potential immunomodulatory interactions and complex regulatory relationships. Overall, exposure to CA enhances CYP450 expression, suggesting that CA can influence immune responses by degrading ligands on xenosensitive transcription factors.

2.
Toxicology ; 463: 152970, 2021 11.
Article En | MEDLINE | ID: mdl-34606951

Intrauterine exposure to particulate matter (PM) has been associated with an increased risk of asthma development, which may differ by the age of asthma onset, sex, and pollutant concentration. To investigate the pulmonary effects of in utero exposure to concentrated urban ambient particles (CAPs) in response to house dust mite (HDM) sensitization in juvenile mice. Mice were exposed to CAPs (600 µg/m3 PM2.5) during the gestational period. Twenty-two-day postnatal mice were sensitized with HDM (100 µg, intranasally, 3 times per week). Airway responsiveness (AHR), serum immunoglobulin, and lung inflammation were assessed after 43 days of the postnatal period. Female (n = 47) and male (n = 43) mice were divided into four groups as follows: (1) FA: not exposed to CAPs; (2) CAPs: exposed to CAPs; (3) HDM: sensitized to HDM; and (4) CAPs+HDM: exposed to CAPs and HDM-sensitized. PM2.5 exposure did not worsen lung hyperresponsiveness or allergic inflammation in sensitized animals. The levels of the lung cytokines IL-4, TNF-α, and IL-2 were differentially altered in male and female animals. Males presented hyporesponsiveness and increased lung macrophagic inflammation. There were no epigenetic changes in the IL-4 gene. In conclusion, intrauterine exposure ambient PM2.5 did not worsened allergic pulmonary susceptibility but affected the pulmonary immune profile and lung function, which differed by sex.


Lung/immunology , Maternal Exposure/adverse effects , Particulate Matter/toxicity , Prenatal Exposure Delayed Effects/immunology , Animals , Cytokines/immunology , Female , Immunoglobulins/blood , Immunoglobulins/immunology , Male , Mice , Mice, Inbred BALB C , Particulate Matter/immunology , Pneumonia/immunology , Pregnancy , Pyroglyphidae/immunology , Respiratory Hypersensitivity/immunology
3.
Exp Mol Pathol ; 120: 104641, 2021 06.
Article En | MEDLINE | ID: mdl-33901418

Several mechanisms have been suggested to explain the adverse effects of air pollutants on airway cells. One such explanation is the presence of high concentrations of oxidants and pro-oxidants in environmental pollutants. All animal and plant cells have developed several mechanisms to prevent damage by oxidative molecules. Among these, the peroxiredoxins (PRDXs) are of interest due to a high reactivity with reactive oxygen species (ROS) through the functioning of the thioredoxin/thioredoxin reductase system. This study aimed to verify the gene expression patterns of the PRDX family in bronchial epithelial airway cells (BEAS-2B) cells exposed to diesel exhaust particles (DEPs) at a concentration of 15 µg/mL for 1 or 2 h because this it is a major component of particulate matter in the atmosphere. There was a significant decrease in mRNA fold changes of PRDX2 (0.43 ± 0.34; *p = 0.0220), PRDX5 (0.43 ± 0.34; *p = 0.0220), and PRDX6 (0.33 ± 0.25; *p = 0.0069) after 1 h of exposure to DEPs. The reduction in mRNA levels may consequently lead to a decrease in the levels of PRDX proteins, increasing oxidative stress in bronchial epithelial cells BEAS-2B and thus, negatively affecting cellular functions.


Bronchi/metabolism , Epithelial Cells/metabolism , Gene Expression Regulation , Particulate Matter/adverse effects , Peroxiredoxins/metabolism , Vehicle Emissions/analysis , Bronchi/drug effects , Bronchi/pathology , Cells, Cultured , Epithelial Cells/drug effects , Epithelial Cells/pathology , Humans , Peroxiredoxins/genetics
4.
Am J Cardiol ; 139: 126-130, 2021 01 15.
Article En | MEDLINE | ID: mdl-33007308

Bystander training in cardiopulmonary resuscitation (CPR) is crucial to improve the victims' survival and quality of life after sudden cardiac arrest. This observational study aimed to determine the success rate of 2 different programs of CPR training for children, adolescents, and adults in school communities. We assessed the development and acquisition of the following CPR skills: checking local safety, assessing victim's responsiveness, calling for help, assessing victim's breathing, and performing chest compression (hands and straight arms placement on the chest, compression velocity, depth, and chest release) using a 40-minute program with handmade manikins or the 120-minute program using intermediate-fidelity manikins. There were 1,630 learners (mean age 16 years, 38% male) in the 40-minute program, and 347 learners (mean age 27 years, 32% male) in the 120-minute program. The lowest successful pass rate of learners that developed CPR skills was 89.4% in the 40-minute program and 84.5% in the 120-minute program. The chances of success increased with age in the same program (compression rate and depth). The success rate also increased with the more extended and intermediate-cost program at the same age (assessing victim's responsiveness, calling for help, and assessing the victim's respiration). In conclusion, a 40-minute and cheaper (low-cost handmade manikin) CPR program was adequate to develop and acquire the overall CPR skills for ≥89% at school communities, independently of gender. However, some individual CPR skills can be further improved with increasing age and using the longer and intermediate-cost program.


Cardiopulmonary Resuscitation/education , Manikins , Out-of-Hospital Cardiac Arrest/therapy , Schools , Adolescent , Adult , Female , Hand , Humans , Male , Time Factors , Young Adult
5.
Life Sci ; 267: 118912, 2021 Feb 15.
Article En | MEDLINE | ID: mdl-33338503

AIM: To explore the different consequences of acute and chronic exposure to chlorine gas (Cl2) on the functional and histological parameters of health mice. MAIN METHODS: Firstly, male BALB/c mice were acute exposed to 3.3 or 33.3 or 70.5 mg/m3 Cl2. We analyzed the lung function, the inflammatory cells in the bronchoalveolar lavage, cell influx in the peribrochoalveolar space and mucus production. In a second phase, mice were chronic exposed to 70.5 mg/m3 Cl2. Besides the first phase analyses, we also evaluated the epithelial cells thickness, collagen deposition in the airways, immunohistochemistry stain for IL-1ß, iNOS, IL-17 and ROCK-2 and the levels of IL-5, IL-13, IL-17, IL-1ß and TNF-α in lung homogenate. KEY FINDINGS: Acute exposure to chlorine impaired the lung function, increased the number of inflammatory cells in the BALF and in the airways, also increased the mucus production. Furthermore, when chlorine was exposed chronically, increased the airway remodeling with collagen deposition and epithelial cells thickness, positive cells for IL-1ß, iNOS, IL-17 in the airways and in the alveolar walls and ROCK-2 in the alveolar walls, lung inflammation with increased levels of IL-5, IL-13, IL-1ß and TNF-α in the lung homogenate, and also, induced the acid mucus production by the nasal epithelium. SIGNIFICANCE: Acute and chronic exposure to low dose of chlorine gas worsens lung function, induces oxidative stress activation and mucus production and contributes to augmenting inflammation in health mice.


Chlorine/adverse effects , Oxidative Stress/drug effects , Pneumonia/pathology , Alveolar Epithelial Cells/drug effects , Animals , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Chlorine/metabolism , Inflammation/pathology , Inhalation Exposure , Lung/pathology , Male , Mice , Mice, Inbred BALB C
6.
Sci Rep ; 10(1): 21112, 2020 12 03.
Article En | MEDLINE | ID: mdl-33273694

Several circulating miRNAs identified in the plasma of smokers have been implicated as promoters of nasopharyngeal and lung carcinoma. To investigate the plasma profile of miRNAs in subjects who reduces the number of smoked cigarettes and who quit after six months. We accompanied 28 individuals enrolled in a Smoking Cessation Program over 6 months. At Baseline, clinical characteristics, co-morbidities, and smoking history were similar among subjects. After 6 months, two groups were defined: who successfully quitted smoking (named "quitters", n = 18, mean age 57 years, 11 male) and who reduced the number of cigarettes smoked (20-90%) but failed to quit smoking (named "smokers", n = 10, mean age 52 years, 3 male). No significant clinical changes were observed between groups at baseline and after a 6-month period, however, quitters showed significant downregulations in seven miRNAs at baseline: miR-17 (- 2.90-fold, p = 0.029), miR-20a (- 3.80-fold, p = 0.021); miR-20b (- 4.71-fold, p = 0.027); miR-30a (- 3.95-fold, p = 0.024); miR-93 (- 3.63-fold, p = 0.022); miR-125a (- 1.70-fold, p = 0.038); and miR-195 (- 5.37-fold, p = 0.002), and after a 6-month period in 6 miRNAs: miR-17 (- 5.30-fold, p = 0.012), miR-20a (- 2.04-fold, p = 0.017), miR-20b (- 5.44-fold, p = 0.017), miR-93 (- 4.00-fold, p = 0.041), miR-101 (- 4.82-fold, p = 0.047) and miR-125b (- 3.65-fold, p = 0.025). Using time comparisons, only quitters had significant downregulation in miR-301b (- 2.29-fold, p = 0.038) after 6-month. Reductions in the number of smoked cigarettes was insufficient to change the plasma profile of miRNA after 6 months. Only quitting smoking (100% reduction) significantly downregulated miR-301b related to hypoxic conditions, promotion of cell proliferation, decreases in apoptosis, cancer development, and progression as increases in radiotherapy and chemotherapy resistance.


Down-Regulation/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , Smoking/genetics , Female , Humans , Male , MicroRNAs/blood , Middle Aged , Smoking Cessation
7.
Sci. rep. (Nat. Publ. Group) ; 10(21112): 1-9, Dec. 2020. tab, graf
Article En | SES-SP, SESSP-IDPCPROD, SES-SP | ID: biblio-1140247

Abstract Several circulating miRNAs identified in the plasma of smokers have been implicated as promoters of nasopharyngeal and lung carcinoma. To investigate the plasma profile of miRNAs in subjects who reduces the number of smoked cigarettes and who quit after six months. We accompanied 28 individuals enrolled in a Smoking Cessation Program over 6 months. At Baseline, clinical characteristics, co-morbidities, and smoking history were similar among subjects. After 6 months, two groups were defined: who successfully quitted smoking (named "quitters", n = 18, mean age 57 years, 11 male) and who reduced the number of cigarettes smoked (20­90%) but failed to quit smoking (named "smokers", n = 10, mean age 52 years, 3 male). No significant clinical changes were observed between groups at baseline and after a 6-month period, however, quitters showed significant downregulations in seven miRNAs at baseline: miR-17 (− 2.90-fold, p = 0.029), miR-20a (− 3.80-fold, p = 0.021); miR-20b (− 4.71-fold, p = 0.027); miR-30a (− 3.95-fold, p = 0.024); miR-93 (− 3.63-fold, p = 0.022); miR-125a (− 1.70-fold, p = 0.038); and miR-195 (− 5.37-fold, p = 0.002), and after a 6-month period in 6 miRNAs: miR-17 (− 5.30-fold, p = 0.012), miR-20a (− 2.04-fold, p = 0.017), miR-20b (− 5.44-fold, p = 0.017), miR-93 (− 4.00-fold, p = 0.041), miR-101 (− 4.82-fold, p = 0.047) and miR-125b (− 3.65-fold, p = 0.025). Using time comparisons, only quitters had significant downregulation in miR-301b (− 2.29-fold, p = 0.038) after 6-month. Reductions in the number of smoked cigarettes was insufficient to change the plasma profile of miRNA after 6 months. Only quitting smoking (100% reduction) significantly downregulated miR-301b related to hypoxic conditions, promotion of cell proliferation, decreases in apoptosis, cancer development, and progression as increases in radiotherapy and chemotherapy resistance.


Smoking Cessation , Lung Neoplasms , Coronary Disease , Stroke , MicroRNAs
8.
Sci Rep ; 10(1): 3704, 2020 02 28.
Article En | MEDLINE | ID: mdl-32111854

Diesel exhaust particles (DEP) are known to generate reactive oxygen species in the respiratory system, triggering cells to activate antioxidant defence mechanisms, such as Keap1-Nrf2 signalling and autophagy. The aim of this study was to investigate the relationship between the Keap1-Nrf2 signalling and autophagy pathways after DEP exposure. BEAS-2B cells were transfected with silencing RNA (siRNA) specific to Nrf2 and exposed to DEP. The relative levels of mRNA for Nrf2, NQO1, HO-1, LC3B, p62 and Atg5 were determined using RT-PCR, while the levels of LCB3, Nrf2, and p62 protein were determined using Western blotting. The autophagy inhibitor bafilomycin caused a significant decrease in the production of Nrf2, HO-1 and NQO1 compared to DEPs treatment, whereas the Nrf2 activator sulforaphane increased the LC3B (p = 0.020) levels. BEAS-2B cells exposed to DEP at a concentration of 50 µg/mL for 2 h showed a significant increase in the expression of LC3B (p = 0.001), p62 (p = 0.008), Nrf2 (p = 0.003), HO-1 (p = 0.001) and NQO1 (p = 0.015) genes compared to control. In siRNA-transfected cells, the LC3B (p < 0.001), p62 (p = 0.001) and Atg5 (p = 0.024) mRNA levels and the p62 and LC3II protein levels were decreased, indicating that Nrf2 modulated the expression of autophagy markers (R < 1). These results imply that, in bronchial cells exposed to DEP, the Nrf2 system positively regulates autophagy to maintain cellular homeostasis.


Antioxidants/metabolism , Autophagy , Bronchi/metabolism , Epithelial Cells/metabolism , NF-E2-Related Factor 2/metabolism , Vehicle Emissions/toxicity , Bronchi/pathology , Cell Line , Epithelial Cells/pathology , Gene Expression Regulation , Humans
9.
Mediators Inflamm ; 2019: 1356356, 2019.
Article En | MEDLINE | ID: mdl-31565031

Asthma allergic disease is caused by airway chronic inflammation. Some intracellular signaling pathways, such as MAPK and STAT3-SOCS3, are involved in the control of airway inflammation in asthma. The flavonoid sakuranetin demonstrated an anti-inflammatory effect in different asthma models. Our aim was to clarify how sakuranetin treatment affects MAPK and STAT3-SOCS3 pathways in a murine experimental asthma model. Mice were submitted to an asthma ovalbumin-induction protocol and were treated with vehicle, sakuranetin, or dexamethasone. We assayed the inflammatory profile, mucus production, and serum antibody, STAT3-SOCS3, and MAPK levels in the lungs. Morphological alterations were also evaluated in the liver. LPS-stimulated RAW 264.7 cells were used to evaluate the effects of sakuranetin on nitric oxide (NO) and cytokine production. In vivo, sakuranetin treatment reduced serum IgE levels, lung inflammation (eosinophils, neutrophils, and Th2/Th17 cytokines), and respiratory epithelial mucus production in ovalbumin-sensitized animals. Considering possible mechanisms, sakuranetin inhibits the activation of ERK1/2, JNK, p38, and STAT3 in the lungs. No alterations were found in the liver for treated animals. Sakuranetin did not modify in vitro cell viability in RAW 264.7 and reduced NO release and gene expression of IL-1ß and IL-6 induced by LPS in these cells. In conclusion, our data showed that the inhibitory effects of sakuranetin on eosinophilic lung inflammation can be due to the inhibition of Th2 and Th17 cytokines and the inhibition of MAPK and STAT3 pathways, reinforcing the idea that sakuranetin can be considered a relevant candidate for the treatment of inflammatory allergic airway disease.


Flavonoids/therapeutic use , Hypersensitivity/drug therapy , Hypersensitivity/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plant Extracts/therapeutic use , STAT3 Transcription Factor/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Animals , Blotting, Western , Cytokines/metabolism , Magnetic Resonance Spectroscopy , Male , Mice , Mice, Inbred BALB C , RAW 264.7 Cells
10.
Sci Rep ; 9(1): 8693, 2019 06 18.
Article En | MEDLINE | ID: mdl-31213628

Primary Ciliary Dyskinesia (PCD) is underdiagnosed in Brazil. We enrolled patients from an adult service of Bronchiectasis over a two-year period in a cross-sectional study. The inclusion criteria were laterality disorders (LD), cough with recurrent infections and the exclusion of other causes of bronchiectasis. Patients underwent at least two of the following tests: nasal nitric oxide, ciliary movement and analysis of ciliary immunofluorescence, and genetic tests (31 PCD genes + CFTR gene). The clinical characterization included the PICADAR and bronchiectasis scores, pulmonary function, chronic Pseudomonas aeruginosa (cPA) colonization, exhaled breath condensate (EBC) and mucus rheology (MR). Forty-nine of the 500 patients were diagnosed with definite (42/49), probable (5/49), and clinical (2/49) PCD. Twenty-four patients (24/47) presented bi-allelic pathogenic variants in a total of 31 screened PCD genes. A PICADAR score > 5 was found in 37/49 patients, consanguinity in 27/49, LD in 28/49, and eight PCD sibling groups. FACED diagnosed 23/49 patients with moderate or severe bronchiectasis; FEV1 ≤ 50% in 25/49 patients, eight patients had undergone lung transplantation, four had been lobectomized and cPA+ was determined in 20/49. The EBC and MR were altered in all patients. This adult PCD population was characterized by consanguinity, severe lung impairment, genetic variability, altered EBC and MR.


Kartagener Syndrome/diagnosis , Lung Diseases/diagnosis , Pseudomonas Infections/diagnosis , Adult , Aged , Brazil/epidemiology , Comorbidity , Cross-Sectional Studies , Female , Genetic Testing , Humans , Kartagener Syndrome/epidemiology , Kartagener Syndrome/genetics , Lung Diseases/epidemiology , Lung Diseases/genetics , Male , Middle Aged , Prevalence , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/physiology , Severity of Illness Index , Young Adult
11.
PLoS One ; 14(1): e0209351, 2019.
Article En | MEDLINE | ID: mdl-30629626

BACKGROUND: The imbalance between pro- and anti-inflammatory immune responses plays a pivotal role in chronic obstructive pulmonary disease (COPD) development and progression. To clarify the pathophysiological mechanisms of this disease, we performed a temporal analysis of immune response-mediated inflammatory progression in a cigarette smoke (CS)-induced mouse model with a focus on the balance between Th17 and Treg responses. METHODS: C57BL/6 mice were exposed to CS for 1, 3 or 6 months to induce COPD, and the control groups were maintained under filtered air conditions for the same time intervals. We then performed functional (respiratory mechanics) and structural (alveolar enlargement) analyses. We also quantified the NF-κB, TNF-α, CD4, CD8, CD20, IL-17, IL-6, FOXP3, IL-10, or TGF-ß positive cells in peribronchovascular areas and assessed FOXP3 and IL-10 expression through double-label immunofluorescence. Additionally, we evaluated the gene expression of NF-κB and TNF in bronchiolar epithelial cells. RESULTS: Our CS-induced COPD model exhibited an increased proinflammatory immune response (increased expression of the NF-κB, TNF-α, CD4, CD8, CD20, IL-17, and IL-6 markers) with a concomitantly decreased anti-inflammatory immune response (FOXP3, IL-10, and TGF-ß markers) compared with the control mice. These changes in the immune responses were associated with increased alveolar enlargement and impaired lung function starting on the first month and third month of CS exposure, respectively, compared with the control mice. CONCLUSION: Our results showed that the microenvironmental stimuli produced by the release of cytokines during COPD progression lead to a Th17/Treg imbalance.


Pulmonary Disease, Chronic Obstructive/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Biomarkers/metabolism , Cellular Microenvironment/immunology , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Inflammation Mediators/metabolism , Lung/pathology , Lung/physiopathology , Male , Mice , Mice, Inbred C57BL , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Respiratory Mechanics , Smoking/adverse effects , T-Lymphocytes, Regulatory/pathology , Th17 Cells/pathology , Time Factors
12.
Ecotoxicol Environ Saf ; 167: 494-504, 2019 Jan 15.
Article En | MEDLINE | ID: mdl-30368143

Endogenous acetylcholine (ACh), which depends of the levels of vesicular ACh transport (VAChT) to be released, is the central mediator of the cholinergic anti-inflammatory system. ACh controls the release of cytokine in different models of inflammation. Diesel exhaust particles (DEP) are one of the major environmental pollutants produced in large quantity by automotive engines in urban center. DEP bind the lung parenchyma and induce inflammation. We evaluated whether cholinergic dysfunction worsens DEP-induced lung inflammation. Male mice with decreased ACh release due to reduced expression of VAChT (VAChT-KD mice) were submitted to DEP exposure for 30 days (3 mg/mL of DEP, once a day, five days a week) or saline. Pulmonary function and inflammation as well as extracellular matrix fiber deposition were evaluated. Additionally, airway and nasal epithelial mucus production were quantified. We found that DEP instillation worsened lung function and increased lung inflammation. Higher levels of mononuclear cells were observed in the peripheral blood of both wild-type (WT) and VAChT-KD mice. Also, both wild-type (WT) and VAChT-KD mice showed an increase in macrophages in bronchoalveolar lavage fluid (BALF) as well as increased expression of IL-4, IL-6, IL-13, TNF-α, and NF-κB in lung cells. The collagen fiber content in alveolar septa was also increased in both genotypes. On the other hand, we observed that granulocytes were increased only in VAChT-KD peripheral blood. Likewise, increased BALF lymphocytes and neutrophils as well as increased elastic fibers in alveolar septa, airway neutral mucus, and nasal epithelia acid mucus were observed only in VAChT-KD mice. The cytokines IL-4 and TNF-α were also higher in VAChT-KD mice compared with WT mice. In conclusion, decreased ability to release ACh exacerbates some of the lung alterations induced by DEP in mice, suggesting that VAChT-KD animals are more vulnerable to the effects of DEP in the lung.


Lung/drug effects , Vehicle Emissions/toxicity , Vesicular Acetylcholine Transport Proteins/genetics , Animals , Bronchoalveolar Lavage Fluid/cytology , Cytokines/genetics , Cytokines/metabolism , Lung/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Parenchymal Tissue/drug effects , Parenchymal Tissue/metabolism , Pneumonia/chemically induced , Pneumonia/diagnosis , Vesicular Acetylcholine Transport Proteins/deficiency , Vesicular Acetylcholine Transport Proteins/metabolism
13.
Sci Total Environ ; 628-629: 1223-1233, 2018 Jul 01.
Article En | MEDLINE | ID: mdl-30045544

Biodiesel is a renewable energy source that reduces particle emission, but few studies have assessed its effects. To assess the effects of acute inhalation of two doses (600 and 1200 µg/m3) of diesel (DE) and biodiesel (BD) fuels on the inflammatory pulmonary and systemic profile of mice. Animals were exposed for 2 h in an inhalation chamber inside the Container Laboratory for Fuels. Heart rate, heart rate variability (HRV) and blood pressure were determined 30 min after exposure. After 24 h, we analyzed the lung inflammation using bronchoalveolar lavage fluid (BALF); neutrophil and macrophage quantification in the lung parenchyma was performed, and blood and bone marrow biomarkers as well as receptor of endothelin-A (ET-Ar), receptor of endothelin-B (ET-Br), vascular cell adhesion molecule 1 (VCAM-1), inducible nitric oxide synthase (iNOs) and isoprostane (ISO) levels in the pulmonary vessels and bronchial epithelium were evaluated. HRV increased for BD600, D600 and D1200 compared to filtered air (FA). Both fuels (DE and BD) produced alterations in red blood cells independent of the dose. BALF from the BD600 and BD1200 groups showed an increase in neutrophils compared to those of the FA group. Numeric density of the polymorphonuclear and mononuclear cells was elevated with BD600 compared to FA. In the peribronchiolar vessels, there was an increase in ET-Ar and ET-Br expression following BD600 compared to FA; and there was a reduction in the iNOs expression for BD1200 and the VCAM-1 for D1200 compared to FA. In the bronchial epithelium, there was an increase in ETAr at BD600, ET-Br at two doses (600 and 1200 µg/m3) of DE and BD, iNOs at D600 and VCAM-1 at BD1200 and D600; all groups were compared to the FA group. Acute exposure to DE and BD derived from sewage methyl esters triggered pulmonary and cardiovascular inflammatory alterations in mice.


Air Pollutants/toxicity , Biofuels/toxicity , Pneumonia/chemically induced , Toxicity Tests, Acute , Vehicle Emissions/toxicity , Animals , Biomarkers/metabolism , Bronchoalveolar Lavage Fluid , Inhalation Exposure , Male , Mice
14.
Ecotoxicol Environ Saf ; 148: 608-614, 2018 Feb.
Article En | MEDLINE | ID: mdl-29128821

The toxic actions of acute exposition to different diesel exhaust particles (DEPA) fractions on the mucociliary epithelium are not yet fully understood due to different concentrations of organic and inorganic elements. These chemicals elements produce damage to the respiratory epithelium and exacerbate pre-existent diseases. In our study we showed these differences in two experimental studies. Study I (dose-response curve - DRCS): Forty frog-palates were exposed to the following dilutions: frog ringer, intact DEPA diluted in frog-ringer at 3mg/L, 6mg/L and 12mg/L. Study II (DEPF) (DEPA fractions diluted at 12mg/L): Fifty palates - Frog ringer, intact DEPA, DEPA treated with hexane, nitric acid and methanol. Variables analyzed: relative time of mucociliary transport (MCT), ciliary beating frequency (CBF) and morphometric analysis for mucin profile (neutral/acid) and vacuolization. The Results of DRCS: Group DEPA-12mg/L presented a significant increase in the MCT (p<0.05), proportional volume of acid mucus (p<0.05) and decreased proportional volume of neutral mucus and vacuoles (p<0.05). In relation of DEPF: A significant increase in the MCT associated to a decrease in the proportional volume of neutral mucus was founded in nitric acid group. In addition, a significant increase in the proportional volume of acid mucus was found in methanol group. We concluded that: 1) Increasing concentrations of intact DEPA can progressively increase MCT and promote an acidification of intra-epithelial mucins associated to a depletion of neutral mucus. 2) Intact DEPA seem to act as secretagogue substance, promoting mucus extrusion and consequently reducing epithelial thickness. 3) Organic fraction of low polarity seems to play a pivotal role on the acute toxicity to the mucociliary epithelium, by promoting a significant increase in the MCT associated to changes in the chemical profile of the intracellular mucins.


Epithelium/drug effects , Mucociliary Clearance/drug effects , Mucous Membrane/drug effects , Mucus/metabolism , Respiratory System/drug effects , Vehicle Emissions/toxicity , Air Pollution , Animals , Anura , Cilia/drug effects , Mucins/metabolism , Mucous Membrane/metabolism , Palate , Ranidae , Respiratory System/metabolism
15.
Sci Total Environ ; 586: 284-295, 2017 May 15.
Article En | MEDLINE | ID: mdl-28174048

Air pollution is known to exacerbate respiratory diseases and epidemiological studies have shown that women present more chronic respiratory symptoms than man exposed to traffic pollution, however, the reason why is unclear. This study evaluated the inflammatory differences in BALB/c mouse males (n=34) and females (n=111) in three phases of the estrous cycle that were exposed to ambient air (AA) or concentrated ambient particles (CAPs). Tracheal hyperreactivity to methacholine, bronchoalveolar lavage fluid (BALF) and immunohistochemical of airways and lung parenchyma were studied. Hyperreactivity increased in CAPs-exposed female mice compared with AA-exposed mice in estrus (p<0.05) and proestrus phases (p<0.05) and decreased in CAPs-exposed males compared with those exposed to AA (p<0.05). Males had increased numbers of total cells (p=0.037) and macrophages (p=0.028) compared to females. BALF levels of cyclooxygenase-2(COX-2) (p=0.000), transforming growth factor alpha (TGF-α) (p=0.001) and IL-8 receptor alpha (IL-8Rα) (p=0.014) were increased in males compared with proestrus, estrus and diestrus females, independent of exposure. Proestrus females exhibited significantly higher cadherin expression in lung parenchyma than did males (p=0.005). CAPs exposure increased matrix metalloproteinase-9 (MMP-9) (p=0.024) and isoprostane (p=0.003) expression in the airways of both, males and females. The level of substance P (SP) (p=0.001) increased in lung parenchyma in males compared with females, while IL-17 levels in airways (p=0.042) and in lung parenchyma (p=0.008) increased in females. MMP-9 levels (p=0.024) were significantly lower in the lung parenchyma of CAPs-exposed females. TGF-α (p=0.007) levels increased in the lung parenchyma of CAPs-exposed females compared to AA-exposed females. These results suggest that inflammatory markers differentially expressed in male mice were mostly linked to acute inflammation (IL-1ß, IL-8Rα, COX-2), whereas in females, markers that may lead to a chronic inflammatory process such as IL-17 and remodeling (MMP-9) were increased.


Air Pollution/adverse effects , Inflammation , Lung/physiopathology , Particulate Matter/adverse effects , Animals , Bronchoalveolar Lavage Fluid , Cytokines/metabolism , Female , Male , Mice , Mice, Inbred BALB C , Sex Factors
16.
Environ Sci Pollut Res Int ; 23(10): 9862-70, 2016 May.
Article En | MEDLINE | ID: mdl-26856867

Diesel exhaust particles (DEPs) from diesel engines produce adverse alterations in cells of the airways by activating intracellular signaling pathways and apoptotic gene overexpression, and also by influencing metabolism and cytoskeleton changes. This study used human bronchial epithelium cells (BEAS-2B) in culture and evaluates their exposure to DEPs (15ug/mL for 1 and 2 h) in order to determine changes to cell rheology (viscoelasticity) and gene expression of the enzymes involved in oxidative stress, apoptosis, and cytotoxicity. BEAS-2B cells exposed to DEPs were found to have a significant loss in stiffness, membrane stability, and mitochondrial activity. The genes involved in apoptosis [B cell lymphoma 2 (BCL-2 and caspase-3)] presented inversely proportional expressions (p = 0.05, p = 0.01, respectively), low expression of the genes involved in antioxidant responses [SOD1 (superoxide dismutase 1); SOD2 (superoxide dismutase 2), and GPx (glutathione peroxidase) (p = 0.01)], along with an increase in cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) (p = 0.01). These results suggest that alterations in cell rheology and cytotoxicity could be associated with oxidative stress and imbalance between pro- and anti-apoptotic genes.


Antioxidants/metabolism , Apoptosis/drug effects , Bronchi/drug effects , Epithelial Cells/drug effects , Gene Expression/drug effects , Particulate Matter/toxicity , Vehicle Emissions/toxicity , Apoptosis/genetics , Bronchi/metabolism , Bronchi/pathology , Caspase 3/genetics , Caspase 3/metabolism , Cell Line , Cell Survival/drug effects , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Humans , Oxidative Stress/drug effects , Oxidative Stress/genetics , Particle Size , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Rheology
17.
Clinics (Sao Paulo) ; 70(10): 706-13, 2015 Oct.
Article En | MEDLINE | ID: mdl-26598085

OBJECTIVE: We compared the adverse effects of two types of real ambient particles; i.e., total suspended particles from an electrostatic precipitator of a steel mill and fine air particles from an urban ambient particulate matter of 2.5 µm, on mucociliary clearance. METHOD: Mucociliary function was quantified by mucociliary transport, ciliary beating frequency and the amount of acid and neutral mucous in epithelial cells through morphometry of frog palate preparations. The palates were immersed in one of the following solutions: total suspended particles (0.1 mg/mL), particulate matter 2.5 µm 0.1 mg/mL (PM0.1) or 3.0 mg/mL (PM3.0) and amphibian Ringer's solution (control). Particle chemical compositions were determined by X-ray fluorescence and gas chromatography/mass spectrometry. RESULTS: Exposure to total suspended particles and PM3.0 decreased mucociliary transport. Ciliary beating frequency was diminished by total suspended particles at all times during exposure, while particulate matter of 2.5 µm did not elicit changes. Particulate matter of 2.5 µm reduced epithelial mucous and epithelium thickness, while total suspended particles behaved similarly to the control group. Total suspended particles exhibited a predominance of Fe and no organic compounds, while the particulate matter 2.5 µm contained predominant amounts of S, Fe, Si and, to a lesser extent, Cu, Ni, V, Zn and organic compounds. CONCLUSION: Our results showed that different compositions of particles induced different airway epithelial responses, emphasizing that knowledge of their individual characteristics may help to establish policies aimed at controlling air pollution.


Mucociliary Clearance , Mucus , Particulate Matter/chemistry , Particulate Matter/toxicity , Steel/chemistry , Animals , Anura , Cilia , Epithelium , Gas Chromatography-Mass Spectrometry , Mucus/chemistry , Palate/cytology , Spectrometry, X-Ray Emission
18.
Clinics ; 70(10): 706-713, Oct. 2015. tab, graf
Article En | LILACS | ID: lil-762958

OBJECTIVE:We compared the adverse effects of two types of real ambient particles; i.e., total suspended particles from an electrostatic precipitator of a steel mill and fine air particles from an urban ambient particulate matter of 2.5 µm, on mucociliary clearance.METHOD:Mucociliary function was quantified by mucociliary transport, ciliary beating frequency and the amount of acid and neutral mucous in epithelial cells through morphometry of frog palate preparations. The palates were immersed in one of the following solutions: total suspended particles (0.1 mg/mL), particulate matter 2.5 µm 0.1 mg/mL (PM0.1) or 3.0 mg/mL (PM3.0) and amphibian Ringer’s solution (control). Particle chemical compositions were determined by X-ray fluorescence and gas chromatography/mass spectrometry.RESULTS:Exposure to total suspended particles and PM3.0 decreased mucociliary transport. Ciliary beating frequency was diminished by total suspended particles at all times during exposure, while particulate matter of 2.5 µm did not elicit changes. Particulate matter of 2.5 µm reduced epithelial mucous and epithelium thickness, while total suspended particles behaved similarly to the control group. Total suspended particles exhibited a predominance of Fe and no organic compounds, while the particulate matter 2.5 µm contained predominant amounts of S, Fe, Si and, to a lesser extent, Cu, Ni, V, Zn and organic compounds.CONCLUSION:Our results showed that different compositions of particles induced different airway epithelial responses, emphasizing that knowledge of their individual characteristics may help to establish policies aimed at controlling air pollution.


Animals , Mucociliary Clearance , Mucus , Particulate Matter/chemistry , Particulate Matter/toxicity , Steel/chemistry , Anura , Cilia , Epithelium , Gas Chromatography-Mass Spectrometry , Mucus/chemistry , Palate/cytology , Spectrometry, X-Ray Emission
19.
Toxicon ; 104: 14-8, 2015 Sep 15.
Article En | MEDLINE | ID: mdl-26220798

Microcystin-LR (MC-LR) is a harmful cyanotoxin able to induce adverse outcomes in the respiratory system. We aimed to examine the lungs and nasal epithelium of mice following a sub-chronic exposure to MC-LR. Swiss mice were intranasally instilled with 10 µL of distilled water (CTRL, n = 10) or 6.7 ng/kg of MC-LR diluted in 10 µL of distilled water (TOX, n = 8) during 30 consecutive days. Respiratory mechanics was measured in vivo and histology measurements (morphology and inflammation) were assessed in lungs and nasal epithelium samples 24 h after the last intranasal instillation. Despite the lack of changes in the nasal epithelium, TOX mice displayed an increased amount of PMN cells in the lungs (× 10(-3)/µm(2)), higher lung static elastance (cmH2O/mL), resistive and viscoelastic/inhomogeneous pressures (cmH2O) (7.87 ± 3.78, 33.96 ± 2.64, 1.03 ± 0.12, 1.01 ± 0.08, respectively) than CTRL (5.37 ± 4.02, 26.65 ± 1.24, 0.78 ± 0.06, 0.72 ± 0.05, respectively). Overall, our findings suggest that the nasal epithelium appears more resistant than lungs in this model of MC-LR intoxication.


Lung/drug effects , Microcystins/toxicity , Nasal Mucosa/drug effects , Administration, Intranasal , Animals , Dose-Response Relationship, Drug , Granulocytes/cytology , Granulocytes/drug effects , Inflammation/chemically induced , Inflammation/pathology , Lung/metabolism , Male , Marine Toxins , Mice , Nasal Mucosa/metabolism
20.
Respir Res ; 16: 18, 2015 Feb 07.
Article En | MEDLINE | ID: mdl-25848680

BACKGROUND: Diesel exhaust particles (DEPs) are deposited into the respiratory tract and are thought to be a risk factor for the development of diseases of the respiratory system. In healthy individuals, the timing and mechanisms of respiratory tract injuries caused by chronic exposure to air pollution remain to be clarified. METHODS: We evaluated the effects of chronic exposure to DEP at doses below those found in a typical bus corridor in Sao Paulo (150 µg/m3). Male BALB/c mice were divided into mice receiving a nasal instillation: saline (saline; n = 30) and 30 µg/10 µL of DEP (DEP; n = 30). Nasal instillations were performed five days a week, over a period of 90 days. Bronchoalveolar lavage (BAL) was performed, and the concentrations of interleukin (IL)-4, IL-10, IL-13 and interferon-gamma (INF-γ) were determined by ELISA-immunoassay. Assessment of respiratory mechanics was performed. The gene expression of Muc5ac in lung was evaluated by RT-PCR. The presence of IL-13, MAC2+ macrophages, CD3+, CD4+, CD8+ T cells and CD20+ B cells in tissues was analysed by immunohistochemistry. Bronchial thickness and the collagen/elastic fibers density were evaluated by morphometry. We measured the mean linear intercept (Lm), a measure of alveolar distension, and the mean airspace diameter (D0) and statistical distribution (D2). RESULTS: DEP decreased IFN-γ levels in BAL (p = 0.03), but did not significantly alter IL-4, IL-10 and IL-13 levels. MAC2+ macrophage, CD4+ T cell and CD20+ B cell numbers were not altered; however, numbers of CD3+ T cells (p ≤ 0.001) and CD8+ T cells (p ≤ 0.001) increased in the parenchyma. Although IL-13 (p = 0.008) expression decreased in the bronchiolar epithelium, Muc5ac gene expression was not altered in the lung of DEP-exposed animals. Although respiratory mechanics, elastic and collagen density were not modified, the mean linear intercept (Lm) was increased in the DEP-exposed animals (p ≤ 0.001), and the index D2 was statistically different (p = 0.038) from the control animals. CONCLUSION: Our data suggest that nasal instillation of low doses of DEP over a period of 90 days results in alveolar enlargement in the pulmonary parenchyma of healthy mice.


Air Pollutants/toxicity , Pneumonia/chemically induced , Pulmonary Alveoli/drug effects , Vehicle Emissions/toxicity , Animals , Brazil , Bronchoalveolar Lavage Fluid/immunology , Collagen/metabolism , Cytokines/immunology , Cytokines/metabolism , Elastic Tissue/metabolism , Inflammation Mediators/metabolism , Lymphocyte Subsets/drug effects , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred BALB C , Mucin 5AC/genetics , Mucin 5AC/metabolism , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/pathology , Pneumonia/physiopathology , Pulmonary Alveoli/immunology , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Pulmonary Alveoli/physiopathology , RNA, Messenger/metabolism , Respiratory Mechanics/drug effects , Time Factors
...